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ON THE STABILITY OF STEADY ROTATION OF A CYLINDER 
PARTLY FILLED WITH A VISCOUS INCOMPRESSIBLE FLUID* 

N.V. DEFIENDIAEV and V.M. SANDALOV 

The problem of stability in the small of steady rotation at constant angular veloc- 

ity of a cylinder partly filled with viscous incompressible fluid and its axis 
held in viscoelastic supports is considered within the limits of a plane model. 

Taking into account the problem symmetry we reduce the conditions that define para- 

meters for which a change of the system degree of instability occurs to conditions 

of existence of solutions of the equations in variations that define the circular 
precession of a cylinder containing fluid. The derived exact solutionofthe hydro- 

dynamic problem defines the forces exerted by the viscous incompressible fluid that 

partly fills the rotating cylinder on the latter under conditions of circular pre- 

cession. Expressions for components of that force are used for dividing the para- 

meter plane of the cylinder axis supports into regions of different degrees of 
instability. 

In analyzing models of turbomachinery we encounter the problem of stability of steady 

rotation of a circular cylinder partly filled with a viscous incompressible fluid and held 
axisymmetrically in viscoelastic supports under conditions of constancy of the cylinder 

angular velocity projections on the axis of steady rotation. Only a small number of publica- 

tions /l-33/ dealt with the dynamics of bodies with cavities containing a fluid. 

1. Statement of the problem. Let a circular cylinder of radius n steadily rotate 

about its axis (which coincides with the Z axis of the fixed Cartesian coordinate system Oxyz) 

mounted in viscoelastic axisymmetric supports. The viscous incompressible fluid which partly 

fills the cylinder forms a layer of constant thickness k on the inner surface of the cylinder, 

rotating with the latter as a solid body. We shall consider the problem of stabilityinlinear 

approximation using a plane model, i.e. we assume that points of the cylinder can only move 

in a direction parallel to the 0Xy plane, and that the fluid velocity field has only .X, ,Y 
components which, as well as the fluid pressure are independent of %. The plane model is 

admissible, if the cylinder axial displacement and its axis angular displacements are neglig- 

ibly small (e.g., a cylinder with its axis in bearings) and the cylinder is fairly long (end 

effects are negligible). 
The system of linearized equations for a plane model and boundary conditions used here 

consists of the following. 

1) Equations of translational motion of the cylinder parallel to the oxy plane,llnear- 

ized close to the cylinder state in steady rotation 

.11X"" :- Hs; t Kx, = F,, My,” 4 Hy,; !~ Ky, F, (1.1) 

where I,,, Y, are the coordinates of the intersection point of the cylinder axis with the plane 

0.~~3 F,, F,are components of the force exerted by the fluid per unit of cylinder length, .+1 is 
the mass of a unit length of the cylinder, and Hand K are the coefficients, respectively, of 

damping and rigidity of the cylinder axis supports, per unit Of its length. 
'2) The condition of constancy of the cylinder angular velocity of rotation about the z 

axis: 52 = const. 
3) Equations of motion of the viscous incompressible fluid in the Ory plane and linear- 

ized close to the steady state of quasi-solid rotation of the fluid about the 02 axis. 

4) Conditions of fluid adherence to the cylinder surface, of continuity of stresses, and 

the kinematic condition at the free surface transferred in linear approximation with respect 

to deviations from steady rotation, onto surfaces x2 + y2= 2 and 3 + ~'=(a - h)z, respectiv- 

ely. 
5) Formulas that define F,, F, in terms of deviations of pressure and of the fluid 

velocity field components from their respective values steady quasi-solid rotation. 
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2. Properties of symmetry and the circular 
and boundary conditions are linear and homogeneous with 

state rotation of the cylinder and of fluid that partly 

the following two symmetry properties: a) invariance to 

i.e. to transformation t' _ t - t,,, and b) invariance to 
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precession. The indicated equations 

respect to deviations from the steady 

fills its cavity, and obviously have 

shifts of the time reference point, 

turning of the coordinatesystemabout 

oz by the angle n/Z, i.e.' to transformation x' = y,y' = - x,z' =z. 
By virtue of the symmetry property a) the system of Eqs.l)-55) admits the particularsolu- 

tions - eA', where h is the eigenvalue. We shall consider the rotation of a cylinder con- 

taining fluid as steady in the small, when all h have negative real parts, and unsteady, if 

even a single h has a positive real part. If the eigenvalues b continuously depend on para- 

meters of the problem, a change of the system degree of instability takes place at the appear- 

ance of an imaginary h = in. Then besides solution 

(x*e, + y*e,, c:,* (5, y) e, uy* (s, y) ey, I_'* (s. y)) e'O' 

of the system of Eqs.l)-5) we have by virtue of the symmetry proaerty b) also the solution 

(- y*e, 7 x*ey. - uy* (y, - 5) eX A u,* (y, - 2) e4, II* (y, - .r))elwl 

where x*, y* are the complex amplitudes of the radius vector component of the point of inter- 

section of the cylindqr axis withthe O~Y plana,.and c,*, uy*. p*are the complex amplitudes of 

deviations component, of the fluid velocity and pressure fields from their respective values 

in the steady quasi-solid rotation. 
Multiplying the first of these solutions by i and adding it to the second, we obtain by 

virtue of the linearity of Eqs.l)-5) a particular solution that describes the so-called 

circular precession of a cylinder containing fluid, i.e. a motion in which the intersection 

point of the cylinder axis with the Osy plane describes a circle and the deviation of hydro- 

dynamic quatities from their steady state values changes in time _ @WI. Conversely,if for 

some values of parameters Eqs.l)-55) admit solutions of the circular precession type, there 

exists an imaginary eigenvalue h. Thus parameter values for which a change of the instabil- 

ity degree occurs (when at least one eigenvalue is imaginary) can be obtained from the condi- 

tion of existence circular precession of the cylinder containing fluid. 

The above consideration determines the process used here for solving this problem. First, 

we consider the hydrodynamic problem of motion of a viscous incompressible fluid partly fil- 

ling a rotating cylinder performing circular precession. Then we calculate the force exerted 

by the fluid on a rotating cylinder in the case of circular precession. Finally, using the 

obtainedexpressions for the hydrodynamic force and from Eq.(l.l) of the cylinder translational 
motion, we obtain the conditions under which circular precession is possible. These conditions 
determine, in conformity with the above analysis, the boundaries of regions with different 

degrees of instability in the parameter field of the problem. 

3. The hydrodynamic problem. Let an infinitely long circular cylinder of inner 
radius a rotates about its axis at angular velocity co0 and precess at frequency Q, so that 
its axis describes a cylindrical surface of radius t: (Fig.1). The cylinder absoluteangular 

velocity Q is the sum of the cvlinder proper angular velocity (9" and of the precessionveloc- 
ity 0 (d = W0 + 0). 

Fig.1 

We choose the noninertial reference system 05~) (Fig. 

1) rigidly attached to the so-called line of centers 

which passes through the precession center 0, and the 
cylinder cross section center 0. This system translates 
along the circle of radius E at velocity UE androtates 
about the cylinder axis at angular velocity o. We in- 

troduce in the reference space OEq the system of polar 

coordinates r,'p with the center at point 0. In this 
coordinate system components of the field of inertia 
forces acting on a particle of unit mass are in the re- 

ference space OErl of the form 

f, = dr 7- 2ov 7 0% cos v, fu -= - 2ou - & sin 'p (3.1) 

where U, u are the radial and azimuthal components of 
particle velocity relative to the reference system OEq. 

Consider the problem of plane motion of a viscous 
incompressible fluid partly filling a cylinder rotating 

with a circular precession of small radius a, forwhich 
deviations of hydrodynamic quantities from their steady 

state values are small and vary in the fixed reference 
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system in time as _ @ot _ Using the law of energy variation of a viscous fluid, it is pos- 
sible to show that in the case of circular precession of small radius the fluid motion is 
stable in the reference system OEq, i.e. is time independent. 

The equations of the fluid stable motion relative to the system 0gn and the boundarycon- 

ditions are linearized near the steady quasi-solid rotation of fluid about the cylinder axis 

are of the form 

u‘ T 0. u’ _: 0, r .z a (3.4) 

111 0 iill/‘iCi~ II’. t n ~- I/ (3.5) 
where u', U' are small deviations of the velocity field components from (3.2) /I is the pres- 
sure, (‘ is the density v. u are, respectively, the kinematic and dynamic viscosities of the 
fluid, )' -a - jl I- n((o) is the equation of the fluid free surface, and (10 is the pressure on 

the free surface. 

We introduce Lamb's potentials O,$ and the function % 

System (3.3) can then be represented in the form 

+,+&G=0, -+-~G=O. L&j0 = 0 

a$ G=vh) +~!X-W,,~ 
‘p 

(3.6) 

As shown in the Appendix, the ambiguity in the selection of Lamb's potentials (gauging of 

potentials) can be dealt with in such a way that (3.6) reduces to the system 

F .z 0. G x 0. ~10 -:. 0 (3.7) 

After the introduction of Lamb's potentials, boundary conditions (3.4) and (3.5) assume 

the form 

$+++o, +$_$_(1, r=a (3.8) 

z+$-+$-++ 8)- $-Q2/.ll=-+ (3.9) 

r2 8% praag 
a+ aralq 

-~__,_!!!-r$=ij 

r=a--h 

Equations (3.7) with boundary condtions (3.8) and (3.9) contain only the following dimen- 

sional parameters: w0, Q,v,a, a - la, E (parameter p0 is immaterial, since the fluid is incompres- 

sible). Owing to the linearity of the formulated above boundary value problem, parameter f 

appears in the solution in the first power. It only defines the scale of velocityofthe fluid 

motion induced by the cylinder precession. The remaining five parameters constitute only three 

independent dimensionless combinations 

(0 u-h 

+ -G- ( (1 ’ ..a’ 
(3.10) 

which in this problem are the similarity criteria. 

4. Determination of the hydrodynamic force. We pass to the solution of the bound- 

ary value problem (3.7)- (3.91, and shall seek a solution of system (3.7) of the form 

0 _ 2Re [8 (r)eiQl, Q = 2Re IY (r)e'ul. i' --I 

From the third equation of system (3.7) we have 



0= 2 Ro [(c,r + +) e’q] 
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(4.1) 

after which the second equation reduces to 

Integrating (4.2) we obtain 

$=ZRe{[ - $-( 1 c*r + $j + CQLl (kr) + ‘&%I* (kr)) eq 
I,, .= e-xaH,Q) (kr), .I[, .= eXbHI(')(kr) 

k=x - ( 
where (j$,')~(') (kr) is the Hankel function. 

From the first of equations (3.7) for pressure we obtain 

(4.2) 

(4.3) 

(4.4) 

Definition of the fluid free surface deflection 11 (rp) is sought in the form 

1, (cp) = 2Re (n*e'")] (4.5) 

The substitution (4.1) and (4.3)- 14.5) into the boundary conditions (3.8) and (3.9) yields 
a system of linear algebraic equations for constants C,, Cl. CR. C$ f as well as expressions for 
rl* and the additive constant in (4.4) 

(4.6) 

(4.7) 

z=_t!_ 
a ’ 2, (kr) = CSLn (kr) + c&, (X-r) 

L, (kr) = e-xoHf’ (kr), .I/,, (kr) = eXbH(') (kr) n 

In the derivation of (4.6) well known formulas fox derivatives of cylindrical functions 
/4/ were used. In a number of interesting cases the value of kr(b.< r--(n) is very large, 
which enables us to use in (4.6) the asymptotic expansions for tiesefunctions. Renormalized 
Hankel functions L, (kr),,%f,, (kr) are very convenient for this purpose. 

After constants c,, C2, Cg, C4 have been determined, the boundary value problem (3.7)- (3.9) 
is virtually solved. Let us calculate the force with which the fluid acts on the cylinder. 
Integrating the stresses acting on the inner surface of the cylinder, we obtain for components 
of the force acting per unit of its length 

(4.8) 

when the precession frequency W-Q, 
for C1 in (4.6), 

it is comparatively simple to obtain the expression 
using the asymptotic expansions for cylindrical functions in the caseofsmall 

values of the argument /4/, and write (4.8) in the form 
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Expressions (4.9) show that in the neighborhood of resonance ~1, 1., the projection of forct~ 
on the line of centers FE> 0, i.e. the hydrodynamic force tends to pull the cylinder axis 
away from the precession axis' (in Fig.1 the intersection point of the precession axis and the 

plane of the diagram is the precession center 0J.b .Morever, the component I;,, of the force 
can be nonzero only in the case of a viscous fluid (u f 0). Since the denominator in the ex- 
pression for K,, when (I( 6~ 1 is positive, hence when ~1 ( !? we have r,, ‘,> (I. 1.e. the hydro- 
dynamic force tends to increase the angular velocity of cylinder precession and, when G),; (.I 

we have F‘,( 0, which shows the inverse effect of the force. These conclusions are in agrec- 
ment with the concept of the so-called rotating friction /5/ extensively used in applied in- 
vestigations. Note, also, that the moment of the hydrodynamic force (4.9) relative to the 
cylinder axis is zero. 

An example shown in Fig.2 of the dependence of dimensionless hydrodynamic force compon- 

ents Fq5 = Fk”l.“ (solid lines) and I: - F,:'P 

using (4.6) and*;; 8) 

(dash lines) on o:Q, calculated for the case of 
b = 0.5; V/(LlQ') = 10-j . . The scale of force I‘" _= ,,&t:, where IE ~ .X,J ("2 /?I 

is the mass of fluid per unit of cylinder length. The dependence of force on the frequency 
ratio win has a clearly expressed resonance character which is due to resonance excitationof 

waves propagating over the free surface of the rotating fluid contained in the cylinder. 

Comparison of results of calculations of the hydrodynamic force with the forcedetemlined 

with the use of the conservative model (p = 0) shows a good quantitative agreement between the 
: components outside the neighborhood of resonance values of fi)'Q. However, in the resonance 

neighborhood the I component of the hydrodynamic force, unlike that determined using the con- 

servative model, is finite and comparable in magnitude to the 1) component. It is also impor- 
tant to point out that in the resonance neighborhood, even in the case of a very small para- 

meter v/(<2aL) , the wave motion induced by the cylinder precession considerably differs through- 

out the fluid from the motion determined by the conservative model. 

5. Determination of the stability region of steady rotation in the plane 
of parameters of the cylinder axis supports. We substitute the determined in Sect.4 

hydrodynamic force that acts on a unit of cylinder length into the equations of motion of the 

cylinder, setting in the right-hand sides of (1.1) 

!: , PI co5 ot - F, sin ot. k', 1“c sin (,I/ f',, co> wt 

Then, setting in (1.1) s0 lj co.' wt. y. t‘ sin cot to make it conform to circularprecession 

with frequency (11 and radius B. we obtain the relations that link o and the problem parameters 

in the case of circular precession 
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(5.1) 

where K,,H, are the respective damping the rigidity dimensionless coefficientsofthecylinder 

axis supports. 
The dimensionless components F,E. F,, of force depend only on parameters (3.10). When 

these parameters are fixed, formulas (5.1) define in the H,, K, plane a curve whose points 

correspond to parameters for which a circular precession of the cylinder is possible. In 

conformity with the remarks made above that curve separates the plane of parameters of the 

cylinder axis supports H,. K, in region of different degrees of instability. In conformity 

with /6/ we shall call it the D-curve. 
The partitioning of plane H,,K, by the D-curve is shown in Fig.3 in the case of fi : 

0.9,v/(Qaz) = 10w6, i\f/m -= 1.68. The arrows on the D-curve indicate the direction in which 

parameter r increases. The D-curve appearing in Fig.3 consists of a regular branch along 

which parameter 5 varies in the interval (--co. $-a). To each value of parameter rcorresponds 

a point of that curve, and of the singular straight line K, = 0 that corresponds to t = 0. 

Presence of the singular straight line is due to that at T=O components of the hydrodynamic 

force vanish. 
The D-curve is conventionally shaded on one side so that the passage from the shaded 

side to the unshaded corresponds to an increase of the instability degree. In the considered 

here problem the eigenvalues generally intersect the plane imaginary axis A one-by-one, notin 

complex-conjugate pairs. This is due to that when R is constant the equationsofthis problem 

are not invariant to the change of sign of precession o;existence of the eigenvalue i, = io 

does not necessarily imply that b= -io is also an eigenvalue. Consequently the passage from 

the shaded to the unshaded side of the D-curve must generally result in an increase of the 

degree of instability by unity. 
The shading can pass from one side of the D-curve to the other at pointswheretheunique- 

ness of mapping of the imaginary axis of the plane h into points of the D-curve is violated 

/6/. In the considered here problem shading of the D-curve changes only at the regularbranch 

point that corresponds to r=O, since only at that value of T the uniqueness of mapping is 

violated (the singular straight line in the plane of support of the cylinder axis corresponds 

to point t= 0 on the imaginary axis h oftheplane). 

The stability region must always contain a point that corresponds to fairlylargepositive 
damping coefficients H.. The zero degree instability region D,(O) appearing in Fig.3, where 

regions D(n) of instability_.of degree n are also shown, conforms to this statement. It is in- 

teresting that besides D,(U) there exists in the neighborhood of zero of H,,K, one more stab- 

ility region 02(0) (subdivision of that region appears in the right-hand part of Fig.3). Note 

also that when H, = 0, -c=l corresponds to the point on the stability boundary, andthis agrees 

with the known results obtained in /5/ by the phenomenological introduction of internal fric- 
tion in a rotating rotor. 

6. Appendix. Lamb’s potentials 0.9 are not uniquely determined. Indeed, carrying out 

the substitution 0 --6+68,~-+$ +6$, where 

we obtain the same U'. v'. Let J'be defined in conformity with (3.6). After the change of 
potentials in conformity with (6.1), we obtain 

F-tF- 2Q@- o++P$ 

If we now set 

a* = r-y s 9-g dr, 
F 

n+o; 6+=2R’ R=w, (g = F:o,, y = 2Wo,,) (6.2) 

the changed potentials 13,$ are such that F vanishes. 
Let us show that Eqs.cG.1) admit 6$ of the form (6.2). System (6.1) is solvable for 

68, if 
a a a2 r---r- ar ar @+&pw=O (6.3) 

Substituting (6.2) into (6.3) we obtain (p+e) 

'&-W$_WP (6.4) 
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Integration by parts shows that 

=d, consequently, Eq.(6.4) can be represented in the form 

which is valid, since F satisfies 16.31 for any selected potential. Fox the same reason 6~ 
defined in (6.2) satisfies (6.3) also when n = o. 

Thus, system (6.1) with 69 defined in 16.2) is solvable, and determines E3 with an 
accuracy within the additive constant. 
that F-0, with the 0 potential still 
(3.6), we obtain G= coast. The additive 
be selected so that the constant in the 

The existence of Lamb's potentials 
been proved. 

Because of this, Lamb's potentials can be selected so 
accurate apart the additive constant. Reverting to 
constant in potential 0 that remains undetermined can 
right-hand side of the last equality reduces to zero. 
that enable us to reduce system (3.6) to (3.7) has 

The authors thank G.G. Denisov for discussing this work. 
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